Biostatistics

Liam Trimble

Categorical

Appropriate Statistical	Analysis for	r Various	Situations

Type of Data	Comparing 2 Groups	Comparing > 2 Groups
Categorical or ordinal or binary	Chi-Square	Chi-Square
Interval or continuous nonparametric (not normal)	Mann-Whitney U; Wilcoxon	Kruskal-Wallis
Continuous or interval parametric (normal) (Comparing different or independent samples)	Unpaired T-test	One-way analysis of variance
Continuous or interval parametric (normal) (Comparing the same sample - before and after an intervention)	Paired t-test	Two-way analysis of variance

Exposure	Event Occurred	
Status	Yes	No
Exposed	а	b
Not Exposed	С	d

Relative risk reduction = 1 – Relative Risk

Relative Risk =
$$\frac{a/(a+b)}{c/(c+d)}$$

Absolute risk reduction (ARR) = c/(c+d) - a/(a+b)

Odds Ratio =
$$\frac{a/b}{c/d} = \frac{ad}{cb}$$

Number needed to treat = 1/ARR

	Disease Positive	Disease Negative	
Test Positive	True positive (TP)	False positive (FP)	PPV = TP/ (TP + FP)
Test Negative	False negative (FN)	True negative (TN)	NPV = TN/ (TN + FN)
	Sensitivity = TP / (TP + FN)	Specificity = TN / (TN + FP)	

SeNsitivity "SNOUT"

SPecificity "SPIN"

Null hypothesis = there is no statistically significant difference between groups (p > 0.05)

Type II = Beta

Power = 1- Beta

	Null Hypothesis is TRUE	Null Hypothesis is FALSE
Rejection of Null Hypothesis	False positive (Type I error) ONE truth and it's rejected	True positive
Failure to Reject Null Hypothesis	True negative	False negative (Type II error)

Temporality of different study designs

Case-control = Odds ratio = Outcome

LENGTH TIME BIAS

How does a clinical trial work?

Clinical trials occur in four phases, and each phase has a different purpose.

Phase I

Phase II

Phase III

Phase IV

Focus on safety and the proper dose.

15 to 50 patients

Focus on effectiveness and side effects.

Less than 100 patients

Compares the new treatment to existing treatment.

Hundreds of people

Treatment is approved and available. Long-term effects are observed.

Thousands of people